PUBLICATIONS
PHACT: Phylogeny-Aware Computing of Tolerance for Missense Mutations
Evolutionary conservation is a fundamental resource for predicting the substitutability of amino acids and the loss of function in proteins. The use of multiple sequence alignment alone-without considering the evolutionary relationships among sequences-results in the redundant counting of evolutionarily related alteration events, as if they were independent. Here, we propose a new method, PHACT, that predicts the pathogenicity of missense mutations directly from the phylogenetic tree of proteins. PHACT travels through the nodes of the phylogenetic tree and evaluates the deleteriousness of a substitution based on the probability differences of ancestral amino acids between neighboring nodes in the tree. Moreover, PHACT assigns weights to each node in the tree based on their distance to the query organism. For each potential amino acid substitution, the algorithm generates a score that is used to calculate the effect of substitution on protein function. To analyze the predictive performance of PHACT, we performed various experiments over the subsets of two datasets that include 3,023 proteins and 61,662 variants in total. The experiments demonstrated that our method outperformed the widely used pathogenicity prediction tools (i.e., SIFT and PolyPhen-2) and achieved a better predictive performance than other conventional statistical approaches presented in dbNSFP. The PHACT source code is available at https://github.com/CompGenomeLab/PHACT.
- Related:
- Evolutionary history of Calcium-sensing receptors sheds light into hyper/hypocalcemia-causing mutations
- Structural Basis of Frizzled 7 Activation and Allosteric Regulation
- PHACTboost: A Phylogeny-aware Pathogenicity Predictor for the Missense Mutations via Boosting
- Cross-species investigation into the requirement of XPA for nucleotide excision repair
- Sibling rivalry among the ZBTB transcription factor family: homodimers versus heterodimers
- Common and selective signal transduction mechanisms of GPCRs
- Evolutionary association of receptor-wide amino acids with G protein-coupling selectivity in aminergic GPCRs
- Phylostat: a web-based tool to analyze paralogous clade divergence in phylogenetic trees
- The mutation profile of SARS-CoV-2 is primarily shaped by the host antiviral defense
- The utility of next-generation sequencing technologies in diagnosis of Mendelian mitochondrial diseases and reflections on clinical spectrum
- Phylogenetic analysis of SARS-CoV-2 genomes in Turkey
- Class III histidine kinases: a recently accessorized kinase domain in putative modulators of type IV pili based motility.
- Cache domains are dominant extracellular sensors for signal transduction in prokaryotes.
- Establishing the precise evolutionary history of a gene improves predicting disease-causing missense mutations.