PUBLICATIONS
Dynamics of transcription-coupled repair of cyclobutane pyrimidine dimers and (6-4) photoproducts in Escherichia coli
DNA repair processes modulate genotoxicity, mutagenesis, and adaption. Nucleotide excision repair removes bulky DNA damage, and in Escherichia coli, basal excision repair, carried out by UvrA, B, C, and D, with DNA PolI and DNA ligase, occurs genome-wide. In transcription-coupled repair (TCR), the Mfd protein targets template strand (TS) lesions that block RNA polymerase for accelerated repair by the basal repair enzymes. Accelerated repair is also seen with particular adducts. Notably, of the two major UV photoproducts, basal repair of (6-4) photoproducts [(6-4)PPs] is about 10× faster than repair of cyclobutane pyrimidine dimers (CPDs). To better understand repair prioritization in E. coli, we used XR-seq to measure TCR of UV photoproducts genome-wide. With CPDs, we found that TCR occurred at early time points, increased with transcription level, and was Mfd dependent; later, with completion of TS repair, nontranscribed strand (NTS) repair predominated. With (6-4)PP, when analyzing all genes, TCR was not observed; in fact, among the most highly transcribed genes, slightly more repair of (6-4)PPs in the NTS was evident. Thus, the very rapid basal repair of (6-4)PP in the NTS was faster than TCR of (6-4)PPs in the TS. Overall, TCR is of limited importance in (6-4)PP repair, and TCR of CPDs is limited to the TS of more highly transcribed genes. These results are consistent with the significant role of Mfd in mutagenesis and the modest effect of mfd deletion on UV survival and bear upon the response of E. coli to bulky DNA damage.
- Related:
- Transcription Factors, Nucleotide Excision Repair, and Cancer: A Review of Molecular Interplay
- UV-induced reorganization of 3D genome mediates DNA damage response
- Global repair is the primary nucleotide excision repair subpathway for the removal of pyrimidine-pyrimidone (6-4) damage from the Arabidopsis genome
- The interplay of 3D genome organization with UV-induced DNA damage and repair
- The Mfd protein is the Transcription-Repair Coupling Factor (TRCF) in Mycobacterium smegmatis
- Effects of replication domains on genome-wide UV-induced DNA damage and repair
- Genome-wide Excision Repair Map of Cyclobutane Pyrimidine Dimers in Arabidopsis and the Roles of CSA1 and CSA2 Proteins in Transcription-Coupled Repair
- CSB-independent, XPC-dependent transcription-coupled repair in Drosophila.
- Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events
- Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells
- Differential damage and repair of anti-cancer drug cisplatin induced DNA-adducts across mouse organs
- Genome-wide mapping of nucleotide excision repair with XR-seq.
- Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues.
- Genome-wide Excision Repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns.
- Single-nucleotide resolution dynamic repair maps of UV damage in Saccharomyces cerevisiae genome.
- Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli.
- Molecular mechanism of DNA excision repair and excision repair maps of the human and E. coli genomes.
- Dynamic maps of UV damage formation and repair.
- Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene.
- Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase.