PUBLICATIONS
The Mfd protein is the Transcription-Repair Coupling Factor (TRCF) in Mycobacterium smegmatis
In vitro and in vivo experiments with Escherichia coli have shown that the Mfd translocase is responsible for transcription-coupled repair, a sub-pathway of nucleotide excision repair involving the faster rate of repair of the transcribed strand than the non-transcribed strand. Even though the mfd gene is conserved in all bacterial lineages, there is only limited information on whether it performs the same function in other bacterial species. Here, by genome scale analysis of repair of UV-induced cyclobutane pyrimidine dimers we find that the Mfd protein is the Transcription-Repair Coupling Factor (TRCF) in Mycobacterium smegmatis. This finding, combined with the inverted strandedness of UV-induced mutations in wild-type and mfd- Escherichia coli and Bacillus subtilis indicate that the Mfd protein is the universal TRCF in bacteria.
- Related:
- Transcription Factors, Nucleotide Excision Repair, and Cancer: A Review of Molecular Interplay
- Dynamics of transcription-coupled repair of cyclobutane pyrimidine dimers and (6-4) photoproducts in Escherichia coli
- UV-induced reorganization of 3D genome mediates DNA damage response
- Global repair is the primary nucleotide excision repair subpathway for the removal of pyrimidine-pyrimidone (6-4) damage from the Arabidopsis genome
- The interplay of 3D genome organization with UV-induced DNA damage and repair
- Effects of replication domains on genome-wide UV-induced DNA damage and repair
- Genome-wide Excision Repair Map of Cyclobutane Pyrimidine Dimers in Arabidopsis and the Roles of CSA1 and CSA2 Proteins in Transcription-Coupled Repair
- CSB-independent, XPC-dependent transcription-coupled repair in Drosophila.
- Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events
- Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells
- Differential damage and repair of anti-cancer drug cisplatin induced DNA-adducts across mouse organs
- Genome-wide mapping of nucleotide excision repair with XR-seq.
- Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues.
- Genome-wide Excision Repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns.
- Single-nucleotide resolution dynamic repair maps of UV damage in Saccharomyces cerevisiae genome.
- Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli.
- Molecular mechanism of DNA excision repair and excision repair maps of the human and E. coli genomes.
- Dynamic maps of UV damage formation and repair.
- Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene.
- Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase.